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Efficiency of quasispherical black hole accretion 
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Received 15 April 1980 

Abstract. The maximum efficiency for idealised accretion is considered, and previous 
remarks justified. 

It has been remarked that the maximum possible efficiency obtainable from the most 
idealised configuration for quasispherical accretion onto a Schwarzschild black hole is 
just over 20% (Rees 1977). We give the reasoning behind this remark, and consider the 
actual maximum. 

The idealisation we consider is the collision of two oppositely directed matter 
streams, where any velocity of the centre of mass is purely radial. All the kinetic energy 
perpendicular to this velocity is considered to be dissipated totally without further 
interaction, being radiated uniformly over the sky of the local rest frame. The notation, 
and all other references, are taken from Misner et a1 (1973, hereafter referred to as 
MTW, chapter 25) .  There are four different effects to consider: (i) the energy available 
locally, (ii) the red-shift factor for the radiation which escapes back out, (iii) the fraction 
of the radiation captured by the black hole itself, and (iv) relativistic beaming, if the 
residual velocity (the centre-of-mass velocity of the frame in which the radiation pattern 
is uniform) is non-zero. 

For the first we have that the local energy per unit mass is given by 

E'local=E I 1-- 2Y2 = ( p + p + + p r p r + / + L 2 ) 1 ' 2 / p  

where CL is the rest mass of the particle (or rest mass density of a stream) and p+,  pr are 
the momentum components in the local frame. Thus, the available energy is 

prpr+/+L2  local - (7-) . 

Since the radial velocity is 

and the red-shift term (factor (ii)) is simply [l - (2M/r) ] ' /2  = poE, we obtain a 'raw' 
efficiency by dividing throughout by the energy per unit mass at infinity, E, as 
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The ‘potential barrier’ to geodesic motion in the Schwarzschild field, p, is given by 

P2 = (1 -?) ( 1 +$) 
where L‘ is the angular momentum per unit mass. 

We will not consider any collisions closer to the hole than r = 3M, because of the 
large capture cross section of the hole. Above r = 3M, all radiation emitted in a cone of 
semi-angle 6, about the inward direction will be absorbed, where 

sin 6, = 3- 
r 

(MTW box 25.7). If the distribution of the photons is isotropic in a frame travelling with 
velocity U with respect to the local rest frame, then the observed distribution is 

where 8 is the angle with the forward U direction, and y 2  = (1 - U’)-’. Integrating, the 
fraction beamed into a cone of semi-angle 6 about the forward direction is 

(1 + v ) ( l  -cos 6) 
2(1-VCOS6) ’ 

F(v ,  6) = 

The possible collisions are between two infalling streams, two outflowing streams, or 
one of each. In the first two cases, the residual velocity is given by equation (3), and in 
the last it is zero. However, the latter two cases are only possible if I? is smaller than the 
maximum of P, which depends on Then there is a minimum radius of interaction, 
?min, which occurs where P = I? and is one of the roots of the cubic 

(9 1 (1 --E2)r3 - 2 ~ r ’ + i ’ r  - 2 ~ i ’  = 0. 

(See the discussion of the potential barrier in MTW.) 
The maximum efficiency is due to competition between the capture cross section, 

which is smaller further away and for outward beaming, and the ‘raw’ efficiency el  
(equation (4)), which is larger nearer the hole. The total efficiency is given by combining 
(4), (61, (8) and (9): 

E I = F ( - u ,  r - 6 m ) E l ( - u )  Infall, r 2 3M 

E o  = F(u ,  7T - 6,) E l ( U )  Outflow, r 3 rmin(i?, L1) (10) 

E H  = F(0,  v -6&1(0) Head-on. 

Note that, where rmin exists, = eo = eH at r = rmin, as expected because all motion is 
tangential there. 

= 1, at the smallest 
possible r,,,, which is 4 M  and occurs for L“ = 4M. This is an efficiency of 0.2043, and is 
the maximum possible for I? = 1. Figure 1 shows €1, EO and E H  for r 3 4 M ,  for = 1, 
,f = 4M. F o r i  > 4 M ,  rmi,  increases and decreases faster than F can compensate. For 
i < 4 M ,  there is no rmin, but the hole captures sufficiently more to overcome the 
increase in el. (Note that is slightly larger-a few parts in 105-for r just less than rmin, 
which is (strictly) not allowed, but just possible because r = 4 M  is an unstable circular 
orbit.) 

The figure commonly quoted corresponds to parabolic infall, 



Efficiency of quasispherical black hole accretion 3771 

L.0 L.1 
Radius of collision 

L.2 

Figure 1. The accretion efficiency for two different combinations of and i, corresponding 
to the three cases of infalling (I), out-flowing (0), and head-on (H) collisions (see equations 
(10)). 

Although parabolic accretion is probably the most likely physically, because it 
corresponds to zero velocity at infinity, other values of l? are also of interest. Smaller 
energies, l? < 1, correspond to matter initially at rest rather closer than infinity. More 
energetic accretion, I? > 1, occurs with unbound matter, perhaps coming from explosive 
processes. Small variations around I? = 1 change the resultant efficiencies, and it is 
possible to add a per cent or so. Thus for I? = 1.02, there is an efficiency of 0.2169 for 
outward-beamed collisions at r = 4111, with L'= 4.156111. For l? = 1.03, there is a value 
of 0.2201 for outward-beamed collisions with L" = 4*24M, at r = 4.1111. It is generally 
true that E I  and EH decrease as r increases beyond rZin, whilst EO peaks somewhat 
outside of rmin. Figure 1 also shows some curves with E > 1. 

Thus we see that idealised dissipative quasispherical accretion can reach an efficiency 
of 22%, and why this is so. 
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